
 Home Common Compounds Exam Guide FAQ Features Glossary Construction Kits Companion Notes Just Ask Antoine! Slide Index Toolbox Tutorial Index Companion Notes
Introduction Measurement Matter Atoms & ions Compounds Chemical change The mole Gases The quantum theory Electrons in atoms The periodic table
|  | 

Learning objectives
- Describe, distinguish, and relate the following properties. Predict whether these properties increase, decrease, or stay the same over the course of a given chemical or physical change.
- temperature
- thermal energy
- Understand
heat on both theoretical and experimental levels.
- Relate heat transferred to changes in thermal energy when no work is done.
- Relate heat to an object's mass and initial and final temperatures. Clearly distinguish heat and temperature.
- Explain how heat can be measured experimentally (calorimetry).
- Estimate the final temperature when hot and cold objects are brought into contact.
- Define heat capacity and
specific heat. Describe how these quantities can be measured experimentally.
- Define enthalpy. Distinguish enthalpy from thermal energy.
- Describe how changes in enthalpy and thermal energy accompanying a chemical reaction can be measured calorimetrically.
- Define bond energy. Use tables of bond energies to estimate the enthalpy of a reaction.
- Write and manipulate thermochemical equations.
- Combine a set of step thermochemical equations to obtain a net thermochemical equation
(Hess's Law)
- Write thermochemical equations for combustion and formation reactions.
Before you start...
- energy, energy units, and the difference between kinetic and potential energy
- review the relationship between temperature and average molecular velocity
Lecture outlineIn all chemical change, chemical bonds are broken or formed.
Energy is required to break a chemical bond (just as energy is required to stretch a spring until it breaks).
Conversely, forming a chemical bond releases energy. Virtually all chemical reactions absorb or release energy because
bond making seldom exactly balances bond breaking in the reaction. In this unit, we will learn to measure and predict the amount of heat absorbed or released by a chemical reaction.
The concept of energy
- the usual definition of energy: the ability to do work
- work is moving an object against an opposing force
- work = distance × opposing force
- SI unit of work or energy: the joule (J)
- two basic forms of energy
- potential energy: energy of position
- examples
- boulder on a ledge
- cations and anions
- chemical bonds
- kinetic energy: energy of motion
- why is the concept of energy useful?
- if something is isolated from everything else, its total energy never changes
- this allows seemingly unrelated behaviors of the system to be connected
- example: the pendulum
- Two things energy is NOT
- some sort of invisible fluid
- something which can be measured directly
Thermal energy
- definition: energy due to chaotic molecular motions
- three factors affecting thermal energy
- temperature
- higher temperature leads to higher thermal energy
- sample size
- a cup of hot coffee has more energy than a teaspoon of coffee, all other things being equal.
- composition
- E(solid) < E(liquid) < E(gas), all other things being equal
- anything that changes temperature, sample size and/or composition of an object can change its thermal energy
Heat
- definition: transfer of thermal energy due to a temperature difference
- thermal energy isn't measurable, but heat is
- Three factors affect how much heat an object absorbs or loses
- mass of object
- temperature change of object
- final temperature - initial temperature
- if there is no change in temperature, no heat flows
- composition of object
- specific heat: heat required to raise the temperature of 1 g of material by 1 K
- different materials have different specific heats
material at 298 K and 1 atm |
specific heat (J/g K) |
ice |
2.09 |
water |
4.18 |
steam |
1.86 |
sodium |
1.23 |
aluminum |
0.9 |
iron |
0.45 |
- heat capacity: heat required to raise the temperature of an object by 1 K
- computing heat
- heat = mass x specific heat x temperature change = heat capacity x temperature change
- examples
- 100.0 g of water cools from 30.10°C to 25.05 °C. How much heat is released?
- 100.0 g of water at 25.00 °C absorbs 100 J of heat. What is its final temperature?
- A stone weiging 2.0 g absorbs 5.0 J of heat and warms by 3.0 °C. What is the specific heat of the stone? What is the heat capacity of the stone?
Enthalpy
- enthalpy change: heat absorbed or released by a process running at constant pressure
- symbol:
H = final enthalpy - initial enthalpy
- note: enthalpy changes depend only on initial and final states, not on the route between them!
- state function: a quantity that depends only on the present state (properties) of the system, not on the process used to arrive at that state.
- enthalpy changes are slightly different from thermal energy changes
- constant pressure processes must use a little energy to push back the atmosphere
- enthalpy change is thermal energy change, minus work against atmosphere, for a constant pressure process
Comparing Thermochemical Quantities
|
definition |
SI units |
type |
temperature |
hotness/coldness property that controls direction of heat flows |
K |
intensive property |
thermal energy |
energy due to molecular motions |
J |
extensive property |
heat |
transfer of thermal energy due to a temperature difference |
J |
process |
enthalpy |
adjusted thermal energy |
J |
extensive property |
Calorimetry
- calorimetry is the experimental measurement of heat flows
- bomb calorimetry
- constant pressure calorimetry: heat generated by a constant pressure process
- strategy for solving calorimetry problems
- identify all q's by deciding which parts of the system absorb or release significant amounds of heat
- set up an energy conservation equation. set the sum of all heat flows to zero.
- introduce
T's. replace experimental q's with temperature changes, using q = mc T or q = C T.
-
solve the equation for the desired quantity.
Enthalpy of Reaction
- chemical reactions usually absorb or release heat
- energy must be absorbed to break a chemical bond
- energy is released when a chemical bond forms
- exothermic vs. endothermic reactions
Reaction type: |
exothermic |
endothermic |
heat is: |
released |
absorbed |
reaction vessel temperature: | rises |
falls |
enthalpy change is | negative |
positive |
net bond: | formation |
breaking |
Thermochemical equations
- example: spacecraft reentry
- shockwave processes involve bond breaking
 | |
N2(g) 2N(g) | H = +941 kJ |
O2(g) 2O(g) | H = +502 kJ |
N2(g) + O2(g) 2NO(g) | H = + 168 kJ |
- heat shield processes involve bond making
 | |
2N(g) N2(g) | H = -941 kJ |
2O(g) O2(g) | H = -502 kJ |
N(g) + O(g) NO(g) | H = -638 kJ |
- these are thermochemical equations: stoichiometric equations with reaction enthalpy
- whatever you do to the stoichiometric equation, do also to the reaction enthalpy!
- reversing the reaction reverses the sign on the reaction enthalpy
- scaling the reaction scales the reaction enthalpy
- adding reactions adds reaction enthalpies
- How to combine 'step' thermochemical equations to get a 'target' equation:
- write the step reactions.
- write the target reaction.
- reverse step reactions so products/reactants match the target reaction.
- scale step reactions so products/reactants that don't appear in the target reaction will cancel out.
- add the step reactions.
- scale the resulting reaction so it matches the target reaction.
H depends on pressures, concentrations, and temperatures of reactants and products!
- to keep things simple, define standard conditions:
- all solution concentrations are 1 M
- all gases have a partial pressure of 1 atm
- all liquids and solids are under an external pressure of 1 atm
- reaction occurs at 25°C
- write
H° when the reaction is run under standard conditions
special reaction enthalpies
- the following are often tabulated for use as 'step' reactions:
|
definition |
symbol |
sign |
enthalpy of formation |
enthalpy of formation of one mole of compound from its elements in their most stable forms |
Hf |
+ or - |
enthalpy of combustion |
enthalpy of complete combustion of one mole of compound |
Hc |
always - |
- use the same procedure we outlined earlier to combine formation or combustion reactions to get a target reaction
Enthalpies of phase changes
|
definition |
symbol |
sign |
enthalpy of fusion |
Heat to melt 1 mole of solid to liquid |
Hfus |
always + |
enthalpy of vaporization |
Heat to evaporate 1 mol of liquid |
Hvap |
always + |
enthalpy of sublimation |
Heat to vaporize 1 mol of solid |
Hsub |
always + |
- heating & cooling curves
- obtain heat capacities from slopes of curve where temperature changes
- plateaus are regions where melting or boiling is occuring
- temperatures at plateaus indicate melting and boiling points
- length of plateau is enthalpy of phase change
- mixtures give curves without flat plateaus
Molecular view of enthalpy changes
|